微比恩 > 信息聚合 > Deepseek 突破 AI 训练烧钱魔咒:1.2 万美元 1/525 成本 MT-Bench 跑分媲美 GPT-4o

Deepseek 突破 AI 训练烧钱魔咒:1.2 万美元 1/525 成本 MT-Bench 跑分媲美 GPT-4o

2025-04-08 10:33:03来源: IT之家

IT之家 4 月 8 日消息,深度求索(DeepSeek)联合清华大学,合作推出全新 AI 对齐技术 SPCT(自我原则点评调优),突破传统依赖海量训练数据的模式,通过推理阶段动态优化输出质量。根据研究团队 4 月 4 日发表的论文,该技术通过“原则合成-响应生成-批判过滤-原则优化”的递归架构,让模型能在推理时动态修正输出。SPCT 方法分为两个阶段。一是拒绝式微调作为冷启动阶段,让 GRM 适应不同输入类型并以正确格式生成原则与点评内容。二是基于规则的在线强化学习阶段,采用基于规则的结果奖励,鼓励 GRM 生成更好的原则与点评内容,提升推理阶段可扩展性。测试中,270 亿参数的 DeepSeek-GRM 模型测试显示,通过每查询 32 次采样的推理计算,达到了 671B 规模模型的性能水平。这种硬件感知设计采用混合专家系统(MoE),支持 128k token 上下文窗口,单查询延迟仅 1.4 秒。报告指出 SPCT 显著降

关注公众号
标签: 美元 EN deepseek seek Mt